Reaction coordinates for the flipping of genetic switches.
نویسندگان
چکیده
We present a detailed analysis, based on the forward flux sampling simulation method, of the switching dynamics and stability of two models of genetic toggle switches, consisting of two mutually repressing genes encoding transcription factors (TFs); in one model (the exclusive switch), the two transcription factors mutually exclude each other's binding, while in the other model (general switch), the two TFs can bind simultaneously to the shared operator region. We assess the role of two pairs of reactions that influence the stability of these switches: TF-TF homodimerization and TF-DNA association/dissociation. In both cases, the switch flipping rate increases with the rate of TF dimerization, while it decreases with the rate of TF-operator binding. We factorize the flipping rate k into the product of the probability rho(q*) of finding the system at the dividing surface (separatrix) between the two stable states, and a kinetic prefactor R. In the case of the exclusive switch, the rate of TF-operator binding affects both rho(q*) and R, while the rate of TF dimerization affects only R. The general switch displays a higher flipping rate than the exclusive switch, and both TF-operator binding and TF dimerization affect k, R, and rho(q*). To elucidate this, we analyze the transition state ensemble. For the exclusive switch, the transition state ensemble is strongly affected by the rate of TF-operator binding, but unaffected by varying the rate of TF-TF binding. Thus, varying the rate of TF-operator binding can drastically change the pathway of switching, while changing the rate of dimerization changes the switching rate without altering the mechanism. The switching pathways of the general switch are highly robust to changes in the rate constants of both TF-operator and TF-TF binding, even though these rate constants do affect the flipping rate; this feature is unique for nonequilibrium systems.
منابع مشابه
Minimizing the number of tool switches in flexible manufacturing cells subject to tools reliability using genetic algorithm
Nowadays, flexible manufacturing systems play an effective role in a variety of production and timely response to the needs of their customers. Flexible manufacturing cell is a part of this system that includes machines with flexibility in manufacturing different parts. For many years, minimizing the number of tool switches in the machines has been studied by the researchers. Most research in t...
متن کاملAssessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance
Narrow genetic variability may lead to genetic vulnerability of field crops against biotic and abiotic stresses which can cause yield reduction. In this study a set of 37 wheat microsatellite markers linked with identified QTLs for salinity tolerance were used for the assessment of genetic diversity for salinity in 30 promising lines of hexaploid bread wheat (Triticum aestivum L.). A total of 4...
متن کاملOptimal Placement of Remote Control Switches in Radial Distribution Network for Reliability Improvement using Particle Swarm Optimization with Sine Cosine Acceleration Coefficients
Abstract: One of the equipment that can help improve distribution system status today and reduce the cost of fault time is remote control switches (RCS). Finding the optimal location and number of these switches in the distribution system can be modeled with various objective functions as a nonlinear optimization problem to improve system reliability and cost. In this article, a particle swarm ...
متن کاملStatistical physics of a model binary genetic switch with linear feedback.
We study the statistical properties of a simple genetic regulatory network that provides heterogeneity within a population of cells. This network consists of a binary genetic switch in which stochastic flipping between the two switch states is mediated by a "flipping" enzyme. Feedback between the switch state and the flipping rate is provided by a linear feedback mechanism: the flipping enzyme ...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 94 9 شماره
صفحات -
تاریخ انتشار 2008